Indian Statistical Institute, Bangalore

B. Math. III Second Semester

Differential Geometry II: Final Exam (Back paper)

Duration: 3 hours Date: May 29, 2015

Maximum Marks: 50

- (1) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a C^{∞} -smooth function. Let $q \in \mathbb{R}$ be a regular value for f such that $S = f^{-1}\{q\} \neq \emptyset$.
 - i) Prove that S is a smooth manifold of dimension n-1
 - ii) Let $p \in S$. Show that the tangent space $T_pS = KerDf(p)$.
 - iii) Calculate T_pS^n , where $S^n \subset \mathbb{R}^{n+1}$ is the standard unit sphere.
 - iv) Show that the tangent bundle of the sphere $S^n \subset \mathbb{R}^{n+1}$ is the set

$$\{(x, v) \in S^n \times \mathbb{R}^{n+1} : \langle v, x \rangle = 0\}.$$

where $\langle .,. \rangle$ is the standard inner product in \mathbb{R}^{n+1} .

(20 marks)

(2) Define a function $F: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ by

$$F(x,y) = \langle x, y \rangle$$

where $\langle .,. \rangle$ is the standard inner product in \mathbb{R}^n

- i) Find DF(a,b)
- ii) If $f: \mathbb{R} \to \mathbb{R}^n$ is differentiable and |f(t)| = 1 for all $t \in \mathbb{R}$. Show that $<(f'(t))^T, f(t)>=0$ for all $t \in \mathbb{R}$.

(10 marks)

(3) Let U be an open subset of \mathbb{R}^n . $f_i \in \mathcal{C}^{\infty}(U)$, i = 1, ..., n. Show that

$$df_1 \wedge \cdots \wedge df_n = \det \left[\frac{\partial f_i}{\partial x^j} dx^1 \wedge \cdots \wedge dx^n \right],$$

where x^1, \ldots, x^n are the coordinates of \mathbb{R}^n .

(10 marks)

- (4) i) Calculate the Riemannian metric of S^2 induced from the standard Riemannian metric of \mathbb{R}^3 .
 - ii) What is the connection in \mathbb{R}^3 with respect to the standard Riemannian metric < .,. >?
 - iii) Calculate the Levi-Civita connection of S^2 with above mentioned Riemannian metric.
 - iv) Find the Levi-Civita connection of any surface S in \mathbb{R}^3 , where the Riemannian metric on the surface is induced by the standard Riemannian metric in \mathbb{R}^3 .

(24 marks)

Note: You can use well-known theorems taught in the class, but you need to write precise statement of the theorem you are using.